Chapter 2
Project Description

2.1 Project Overview

The proposed Sidewalk Repair Program (also referred to as the Project) is a Citywide program to modify the manner in which sidewalk repair projects are undertaken pursuant to the City of Los Angeles’ (City) obligations under the Willits Settlement Agreement (Settlement).1 Currently, the City is complying with the Settlement using existing ordinances and policies. The existing process requires case-by-case review and approval of each sidewalk repair project funded as a result of the Settlement. With the Project, the City is proposing to adopt a new uncodified ordinance2 to revise the way sidewalk repairs undertaken pursuant to the Willits Settlement are reviewed and approved, with a primary goal of streamlining the Settlement implementation process. As explained more fully below, the key components of the ordinance include:

- A ministerial approval process to enable sidewalk repair projects falling within certain specified parameters to proceed upon approval by the City Engineer or a designee, without undergoing further environmental review under the California Environmental Quality Act (CEQA);
- A streamlined discretionary approval process for sidewalk repair projects falling outside the specific parameters for a ministerial sidewalk repair approval;
- A revised Street Tree Retention, Removal and Replacement Policy establishing a 2:1 street tree replacement to removal ratio requirement for years 1-10, 3:1 for years 11-21, and 2:1 for years 22-30, and;
- Mandatory Project Design Features (PDFs) generally consisting of regulatory compliance measures and standard construction conditions and procedures.

The City is the Lead Agency for purposes of CEQA review for the Project, as discussed in Chapter 1, Introduction. The Los Angeles City Council is the City entity responsible for approval of the Project, and the Bureau of Engineering of the City’s Department of Public Works (BOE) is the City department responsible for implementation of the Project.

2.2 Project Approvals and Intended Uses of the EIR

The statutory provisions of CEQA, found within the Public Resources Code Section 21000 et seq., and the State CEQA Guidelines, found within Title 14 of the California Code of Regulations at Section 15000 et seq., authorize lead agencies to prepare various types of EIRs, depending on the circumstances of a particular project and in order to render the environmental review as efficient and useful as possible.

1 Mark Willits, et al. v. City of Los Angeles (U.S. Dist. Court Case No. CV10-05782 CBM (RZX), Term Sheet approved by City Council on April 1, 2015, also referred to as the Willits Settlement Agreement.

2 Generally, uncodified ordinances are those for specific and non-permanent matters (such as modifying the way the Settlement obligations are implemented), while codified ordinances in the City’s municipal and administrative codes are those for general and permanent matters.
The types of EIRs available to lead agencies under CEQA are:

- Project EIRs (CEQA Guidelines Section 15161),
- EIRs as part of general plans (Section 15166),
- master EIRs (Sections 15175–15179.5),
- program EIRs (Section 15168),
- staged EIRs (Section 15167),
- subsequent EIRs (Section 15162), and
- supplements to EIRs (Section 15163).

The EIR types listed above “are not exclusive” (CEQA Guidelines Section 15160). The various types of EIRs allow agencies to tailor their environmental analysis depending on the nature of a proposed project. The different types of EIRs also allow agencies to avoid needless redundancy and duplication. By choosing the most appropriate form of EIR, lead agencies can effectively analyze the foreseeable consequences of a proposed project, including cumulative impacts (CEQA Guidelines Section 15160).

Here, the City determined that the most appropriate type of EIR for the Project is a hybrid project specific and program EIR. The EIR's analysis is project specific to the extent it considers the reasonably foreseeable and potentially significant direct and cumulative significant adverse impacts of the ordinance proposed to govern the majority of sidewalk repairs under the Willits Settlement, including all phases of the sidewalk improvements proposed for future ministerial approval, included in Scenarios 1 and 2 described below. The EIR is also programmatic in its analysis of specific sidewalk improvement projects described as Scenario 3, that may require future discretionary approval(s) because of the potential to have a substantial adverse change on a historically significant resource, including any resource identified as a Historic-Cultural Monument or encompassed within the City's Cultural Heritage Ordinance; unique archaeological resource; unique paleontological resource; tribal cultural resource; and aesthetic resource as affected by a substantial adverse change to a cultural resource. (Los Angeles Administrative Code Section 22.171; see also CEQA Guidelines Sections 15152, 15162–15164, 15168.)

The City has determined that each proposed sidewalk improvement segment, including those that were previously approved or are ongoing, has independent utility justifying their separate processing and approval. Each improved segment, for example, would serve a viable purpose by ensuring continued disability law compliance, consistent with the terms of the Settlement Agreement, even if other segments are never built. One improved sidewalk segment, moreover, does not cause the need for other improvements. (See Del Mar Terrace Conservancy, Inc. v. City Council of the City of San Diego (1992) 10 Cal.App.4th 712, 728-729 [upholding an EIR that treated as the “project” at issue one freeway segment within a long-term, multi-segment regional plan to expand the freeway system throughout San Diego County].) The City has nevertheless determined that preparation of an EIR which considers all the reasonably foreseeable effects of the proposed ordinance and Scenarios 1-3, to the extent feasible, will render the City's existing sidewalk improvement process more efficient, thereby ensuring timely compliance with the terms of the Willits Settlement.

As such, the EIR serves as an informational document for the general public and the Project’s decision-makers. The Final EIR must be certified as adequate prior to adoption of the ordinance.
Implementation of the Project may require discretionary actions and permits from the agencies identified in Table 2-1, below.

Table 2-1. Anticipated Permits and Approvals for Project

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Approval</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City of Los Angeles, City Council</td>
<td>CEQA document and proposed ordinance</td>
<td>Certification of the EIR and related findings. Ordinance would govern implementation for all Project activities over the next approximately 30 years.</td>
</tr>
<tr>
<td>City of Los Angeles, Department of Public Works, Bureau of Engineering</td>
<td>Local Coastal Development Permit</td>
<td>City will obtain any required local coastal approvals in a coastal zone for Project activities.</td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles Regional Water Quality Control Board</td>
<td>National Pollutant Discharge Elimination System Construction Stormwater Pollution Prevention Plan Permit</td>
<td>Water quality and the placement of discharges associated with dewatering activities, if required; no permit required for discharges to sewer (general permit may be used).</td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Coastal Commission</td>
<td>State Coastal Development Permit or other approval</td>
<td>City will obtain any required local coastal approvals in a coastal zone for Project activities.</td>
</tr>
</tbody>
</table>

2.2.1 Baseline Year

This Draft Environmental Impact Report (Draft EIR) uses July 2017 as the baseline year against which Project impacts are compared. This baseline was selected to reflect the physical environmental conditions at the time the Notice of Preparation (NOP) was published, including ongoing sidewalk repair projects occurring in 2017 and leading up to the NOP, consistent with CEQA Guidelines Section 15125(a)(1).

In 2017–2018, approximately 24 miles of sidewalks were repaired in the City. In that same 12-month period, 211 street trees were removed and 484 new street trees were planted. Data from this past work is used to make projections and assumptions for analysis in this Draft EIR. The analysis of Project impacts was prepared assuming that the maximum construction activities possible as a result of City’s commitments under the Willits settlement will occur.

2.2.2 Background

2.1.2.1 Accessibility Laws

Several federal and state accessibility laws, including the Americans with Disabilities Act of 1990 (ADA), the Rehabilitation Act of 1973, the Unruh Act, the Disabled Persons Act, and Title 24 of the California Building Code, among others, contain provisions pertaining to accessibility to certain covered public facilities for persons with disabilities. Public sidewalks and pathways are among the facilities covered by these federal and state accessibility laws and standards. For example, the ADA

2.1.2.2 Willits Settlement

Between December 2006 and March 2011, three separate lawsuits against the City were filed in which the plaintiffs alleged various claims arising under state and federal accessibility laws and involving the alleged conditions of existing City sidewalks. While the City did not admit any wrongdoing and affirmatively denied all of the allegations made by the plaintiff groups, during the pendency of the three lawsuits, the parties entered into the Willits Settlement Agreement (Willits Settlement).

Prior to entering into the Willits Settlement, the City Council instructed BOE to work with various other City departments to utilize existing City contracts for sidewalk repairs adjacent to City facilities as a matter of “urgent necessity” and established BOE as the program manager. Sidewalks adjacent to facilities of the United States, the State of California, the County of Los Angeles, or other governmental entities including, Los Angeles Unified School District facilities, state parks and lands, county parks and waterways, federal lands, Los Angeles County Metropolitan Transportation Authority, California Department of Transportation, and other third parties were not included in the City Council instruction because repair of those sidewalks are the responsibility of those non-City organizations/agencies.

The City Council approved the terms of the Willits Settlement in April 2015, and Judge Consuelo Marshall of the Federal District Court approved the Settlement in August 2016. Generally speaking, the Willits Settlement provides that the City will expend approximately $1.3 billion on sidewalk repairs during the agreement’s 30-year compliance period. The total amount of funding is broken down into annual commitments specified in 5-year increments. For example, the City shall expend $31 million per year for the first five years of the compliance period, increasing to $63 million per year in the final five years of the compliance period. Repair activities covered by the Willits Settlement encompass:

- Installation of missing curb ramps;
- Repair of damage caused by street tree roots to sidewalk or walkway surface so that the sidewalk or walkway surfaces are made accessible to and usable by persons with mobility disabilities;
- Upgrading of existing curb ramps;
- Repair of broken and/or uneven pavement in the pedestrian rights of way deeper or wider than ½ inch;
- Repair of vertical or horizontal displacement or upheaval of the sidewalk or crosswalk surface greater than ½ inch;

3 Mark Willits, et al. v. City of Los Angeles (U.S. Dist. Court Case No. CV10-05782 CBM (RZX), Term Sheet approved by City Council on April 1, 2015, also referred to as the Willits Settlement Agreement or Willits Term Sheet.
- Correction of non-compliant cross-slopes in sidewalks or sections of sidewalks;
- Removal of protruding and overhanging objects and/or obstructions that narrow pedestrian rights of way to less than 4 feet of accessible width;
- Widening of pedestrian rights of way and sections thereof to provide 4 feet of accessible width;
- Providing 4 feet of clearance to the entrances of public bus shelters;
- Repair of excessive gutter slopes at the bottom of curb ramps leading into crosswalks;
- Elimination of curb ramp lips on curb ramps;
- Installation of accessible street tree grates, or other compliant remediation, where such grates are missing from street tree wells;
- Installation of missing utility covers where such covers are missing from sidewalks, crosswalks or pathways; and
- Remediating other conditions as appropriate for improving pedestrian access and complying with the Settlement.

Following the District Court's final approval of the Willits Settlement, the City Administrative Officer (CAO) released a report that recommended consideration of new sidewalk repair policies for a City program that: (1) is permanent and ongoing, (2) is consistent with the Willits Settlement, (3) shares responsibility for maintenance and repair with adjacent property owners, and (4) ensures accessibility in areas with the most significant safety hazards. The Willits Settlement defines pedestrian facilities as "any sidewalk, intersection, crosswalk, street, curb, curb ramp, walkway, pedestrian right-of-way (ROW), pedestrian undercrossing, pedestrian overcrossing, or other pedestrian pathway or walkway of any kind that is, in whole or in part, owned, controlled, or maintained by or otherwise within the responsibility of the City of Los Angeles." The CAO report was prepared in consultation with various City departments and agencies. According to the CAO report, the City should prioritize sidewalk-related access improvements; address access barriers; and repair the most significant safety hazards.

2.1.2.3 Existing Willits Settlement Sidewalk Repairs

The City's current repairs of individual sidewalks required by the Willits Settlement are approved on a case-by-case basis. In November 2016, the City adopted Ordinance No. 184596 that amended Los Angeles Municipal Code (LAMC) Section 62.104 and established a “fix and release” program. The City inspects sidewalks for compliance with applicable accessibility requirements. If the inspection reveals that the sidewalk is not compliant with applicable accessibility requirements, then the City repairs the sidewalk. Repairs of sidewalks are undertaken pursuant to Sidewalks Standard Plan S-440-0, adopted by the City Engineer on June 25, 2014.

Once a sidewalk is repaired and compliant with applicable accessibility requirements, the City issues a Certificate of Sidewalk Compliance. When issued, a sidewalk repair warranty period of 20 years for residential property and 5 years for commercial property begins. During the warranty period, the City guarantees a one-time repair of the sidewalk, as deemed necessary. However, this sidewalk

repair warranty is waived if the property owner elects to retain a street tree that has been recommended for removal. Once the warranty ends, the responsibility for maintenance is transferred back to the property owner.

Ordinance No. 184596 excludes any sidewalk adjacent to a lot owned by a governmental entity, including, but not limited to, the Federal Government, the State of California, any political or administrative subdivision of the Federal Government or State of California, and any county, city and county, municipal corporation other than the City, irrigation district, transit district, school district, or other district established by law.

As required under the terms of the Willits Settlement, in conjunction with criteria set forth by the City Council, BOE has developed a Prioritization and Scoring System (Prioritization System) to guide implementation of Willits Settlement repairs. Due to the significant number of requests received for sidewalk repair, the Prioritization System provides clear and objective direction for prioritizing work, including as follows: City government offices and facilities; transportation corridors; hospitals, medical facilities, assisted living facilities and other similar facilities; places of public accommodation such as commercial and business zones; facilities containing employers; and other areas such as residential neighborhoods and undeveloped areas. (Willits Term Sheet, p. 1.) The Prioritization System was adopted by the City Council in January 2018 (Council File No. 14-0163-S3).

The City offers three programs for sidewalk repairs: Access Request, Rebate, and Report a Sidewalk Problem. Constituents may submit requests under these programs, discussed further below, through the MyLA311 service request system.

Currently, individual sidewalk projects under the Willits Settlement are reviewed on a case-by-case basis under CEQA. CEQA Guidelines Sections 15300 to 15333 identify classes of projects that are categorically exempt from provisions of CEQA because they do not ordinarily result in a significant effect on the environment. Individual sidewalk repairs typically fit the definition of a Class 1 existing facility repair and maintenance, as identified under CEQA Guidelines Section 15301(c). However, this Draft EIR was prepared because, as explained above, the Project consists of a new proposed ordinance that revises the manner in which implementation of sidewalk repairs under the Willits Settlement will be implemented, including making certain sidewalk improvement approvals ministerial to avoid the need to undertake case-by-case sidewalk repair CEQA review.

2.1.2.4 Access Request

Under the Access Request Program, individuals with a mobility disability may submit a request to the City for sidewalk repairs related to physical access barriers, such as broken sidewalks, missing or broken curb ramps, or other access barriers in the public City ROW.

2.1.2.5 Rebate

Under the Rebate Program, any residential or commercial property owner may voluntarily undertake sidewalk repair work that meets accessibility requirements, then receive a rebate in a specified amount. The Rebate Program is intended to accelerate sidewalk repairs in residential and commercial areas and leverage available City funds.

2.1.2.6 Report a Sidewalk Problem

By submitting information under the Report a Sidewalk Problem, the general public may report a sidewalk that is in need of repair. (See https://sidewalks.lacity.org.)
2.1.2.7 Sidewalk Accessibility Grievance Policy and Procedure

Consistent with the Willits Settlement, the Sidewalk Accessibility Grievance Policy and Procedure system was launched on January 1, 2018. Under this policy, members of the Settlement class may submit grievances or complaints regarding access to the City’s pedestrian ROW for persons with mobility disabilities.

2.3 Project Objectives

CEQA requires that an EIR include a statement of objectives sought by the project, and that the objectives include the underlying purpose of the project. These objectives help the lead agency determine the alternatives to evaluate in the EIR (see CEQA Guidelines Section 15124(a)). The fundamental and underlying purpose of the Project is to ensure the City’s timely and efficient compliance with the Willits Settlement, including by streamlining review of future sidewalk repair projects consistent with applicable accessibility standards. The following is a list of objectives for the Project that support the underlying purpose, including the fundamental project objective which is to:

- Ensure the continued and efficient compliance with the requirements of the Willits Settlement while amending the existing program for sidewalk and curb ramp improvements within the City, in accordance with the applicable accessibility requirements, including those required by the Americans with Disabilities Act.

The following additional project objectives have also been identified:

- Retain existing street trees that are the cause of sidewalk barriers to the extent feasible, provided the sidewalk improvements would not result in street tree mortality or compromise public safety;
- If the removal of one or more street trees is required, ensure compliance with the City's replacement requirements adopted to ensure no net street tree canopy loss at the end of the Project implementation period.
- Identify the criteria and process for ministerial approval of future sidewalk improvements and street tree removals and replacements, with the goal of avoiding the need to undertake individualized environmental review of every repair of every City sidewalk or of every street tree removal and replacement and the potential legal challenge to each such approval; thereby streamlining the Willits Settlement implementation and providing certainty to the City and its disability community.
2.4 Project Location and Setting

2.4.1 Location

The City, located within Los Angeles County, covers approximately 467 square miles\(^5\) (see Figure 2-1, Project Location). The City maintains approximately 9,000 miles of sidewalks. In Fiscal Year 2017-2018, the first year of the compliance period, the City completed 24.4 miles of sidewalk repair. Additional sidewalk within the City is privately owned by entities such as the Los Angeles Unified School District, which is responsible for its maintenance.

Los Angeles is bordered by the cities of Calabasas, Hidden Hills, and Santa Monica and the Pacific Ocean to the west; the cities of Burbank, Glendale, and Pasadena and the Angeles National Forest to the north; the cities of South Pasadena, Alhambra, Commerce, Vernon, and South Gate to the east; and the cities of Compton, Carson, Gardena, Inglewood, Culver City, and El Segundo to the south. In addition, West Hollywood, Beverly Hills, and San Fernando are “islands” within the City, and pockets of unincorporated Los Angeles County land lie within and adjacent to the City (see Figure 2-1, Project Location). Within the City, the following communities (either totally or partially) are located within the Coastal Zone: Brentwood/Pacific Palisades, Venice. Palms/Mar Vista/Del Rey, Winchester/Playa Del Rey, San Pedro, and Wilmington/Harbor City. Also located within the Coastal Zone is the Los Angeles Harbor Complex.

Figure 2-1. Project Location
2.4.2 Setting

2.4.2.1 Project Zones

To organize the environmental setting within the Project area into manageable descriptive units, the City has been organized into seven regional project zones that overlap the boundaries of existing Area Planning Commissions (APCs) within the City: North Valley, South Valley, West Los Angeles, Central Los Angeles, East Los Angeles, South Los Angeles, and Harbor. APCs are used by the City Planning Department to determine significant planning and land use issues for proposed plans and projects. Details regarding the geographic project zones that correlate with the seven APCs within the City are summarized in Table 2-2. All data pertaining to each project zone APC were obtained from the City Planning Department website.

Table 2-2. Project Zone Summary

<table>
<thead>
<tr>
<th>Project Zone</th>
<th>Total Area (square miles)</th>
<th>Council Districts</th>
<th>Population</th>
<th>Housing Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Valley</td>
<td>126.8</td>
<td>2,3,6,7,12</td>
<td>707,390</td>
<td>203,971</td>
</tr>
<tr>
<td>South Valley</td>
<td>97.6</td>
<td>2,3,4,5,6, 12</td>
<td>758,815</td>
<td>288,505</td>
</tr>
<tr>
<td>West Los Angeles</td>
<td>90.0</td>
<td>4,5,11</td>
<td>431,348</td>
<td>194,409</td>
</tr>
<tr>
<td>Central Los Angeles</td>
<td>48.8</td>
<td>1,4, 5, 9, 10, 13,14</td>
<td>733,525</td>
<td>291,297</td>
</tr>
<tr>
<td>East Los Angeles</td>
<td>37.6</td>
<td>1,4, 13,14</td>
<td>432,611</td>
<td>130,516</td>
</tr>
<tr>
<td>South Los Angeles</td>
<td>43.8</td>
<td>1, 8, 9, 10, 15</td>
<td>734,593</td>
<td>218,287</td>
</tr>
<tr>
<td>Harbor</td>
<td>33.9</td>
<td>15</td>
<td>205,218</td>
<td>67,000</td>
</tr>
</tbody>
</table>

The project zones range from approximately 33.9 to 126.8 square miles. The City is also divided into 15 Council Districts. In most cases, the project zones contain more than one Council District, and Council Districts are located in more than one project zone, as shown in Figure 2-2. In many sections of the Draft EIR, the existing environmental setting is divided according to the Project Zones.

North Valley

The North Valley project zone is in the northernmost portion of the City and covers approximately 127 square miles. It includes the following communities: Chatsworth-Porter Ranch, Northridge, Granada Hills-Knollwood, Mission Hills-Panorama City-North Hills, Sylmar, Arleta-Pacoima, Sun Valley-La Tuna Canyon, and Sunland-Tujunga-Shadow Hills-Lakeview Terrace-East La Tuna Canyon.

Figure 2-2. City of Los Angeles Council Districts
South Valley

The South Valley project zone is south of the North Valley project zone and covers approximately 98 square miles. It includes the following communities: Canoga Park-West Hills-Winnetka-Woodland Hills, Reseda-West Van Nuys, Encino-Tarzana, Van Nuys-North Sherman Oaks, Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass, and North Hollywood-Valley Village.

West Los Angeles

The West Los Angeles project zone is in the western portion of the City, below the South Valley project zone; covers approximately 90 square miles; and falls within the California Coastal Zone. This project zone includes the following communities: Brentwood-Pacific Palisades, Bel Air-Beverly Crest, Westwood, West Los Angeles, Palms-Mar Vista, Venice, Del Rey, Westchester, Playa Del Rey, and Los Angeles International Airport. Street tree removals and replacements in the California Coastal Zone would require approval from the California Coastal Commission and the City.

Central Los Angeles

The Central Los Angeles project zone is in the central portion of the City and covers approximately 49 square miles. It includes the following communities: Hollywood, Wilshire, Westlake, Central City, and Central North.

East Los Angeles

The East Los Angeles project zone is east of the Central Los Angeles project zone and covers approximately 38 square miles. It includes the following communities: Silver Lake-Echo Park, Northeast Los Angeles, and Boyle Heights.

South Los Angeles

The South Los Angeles project zone is south of the Central and East Los Angeles project zones. It covers approximately 44 square miles and includes the following communities: West Adams-Baldwin Hills-Leimert, South Los Angeles, and Southeast Los Angeles.

Harbor

The Harbor project zone is in the southernmost portion of the City and covers approximately 34 square miles; it also falls within the California Coastal Zone. The Harbor project zone includes the following communities: Harbor-Gateway, Wilmington-Harbor City, San Pedro, and the Port of Los Angeles. Street tree removals and replacements in the California Coastal Zone would require approval from the California Coastal Commission and the City.

The percent distribution of land uses by project zones is shown in Table 2-3. Specifically, the table shows the variations in the types of land uses within the seven project zones.
Table 2-3. Percent Distribution of Land Uses by Project Zone (in percent)³

<table>
<thead>
<tr>
<th>Project Zone</th>
<th>Agricultural</th>
<th>Commercial</th>
<th>Education</th>
<th>Extraction</th>
<th>Industrial</th>
<th>Military</th>
<th>Open Space</th>
<th>Public Facilities</th>
<th>Residential</th>
<th>Transportation</th>
<th>Undeveloped</th>
<th>Utility Facilities</th>
<th>Unknown</th>
<th>Water-Related Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Valley</td>
<td>1.0</td>
<td>8.9</td>
<td>2.9</td>
<td>1.3</td>
<td>4.0</td>
<td>0.0</td>
<td>12.3</td>
<td>2.1</td>
<td>43.0</td>
<td>0.9</td>
<td>17.2</td>
<td>5.7</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>South Valley</td>
<td>0.3</td>
<td>13.2</td>
<td>3.5</td>
<td>0.5</td>
<td>2.6</td>
<td>0.0</td>
<td>7.6</td>
<td>2.2</td>
<td>59.8</td>
<td>1.7</td>
<td>7.2</td>
<td>0.9</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Central</td>
<td>0.0</td>
<td>15.1</td>
<td>2.0</td>
<td>0.8</td>
<td>5.3</td>
<td>0.0</td>
<td>16.0</td>
<td>4.9</td>
<td>41.1</td>
<td>1.5</td>
<td>7.3</td>
<td>4.4</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>East</td>
<td>0.2</td>
<td>10.6</td>
<td>3.9</td>
<td>1.0</td>
<td>4.7</td>
<td>0.0</td>
<td>10.1</td>
<td>2.9</td>
<td>52.7</td>
<td>3.4</td>
<td>7.8</td>
<td>1.7</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>West</td>
<td>0.1</td>
<td>8.6</td>
<td>2.5</td>
<td>0.5</td>
<td>1.4</td>
<td>0.0</td>
<td>7.6</td>
<td>2.0</td>
<td>33.4</td>
<td>6.0</td>
<td>32.0</td>
<td>1.3</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>South</td>
<td>0.2</td>
<td>11.9</td>
<td>5.3</td>
<td>0.8</td>
<td>4.9</td>
<td>0.0</td>
<td>2.6</td>
<td>3.3</td>
<td>68.3</td>
<td>0.9</td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Harbor</td>
<td>0.3</td>
<td>15.4</td>
<td>2.7</td>
<td>6.4</td>
<td>3.8</td>
<td>3.8</td>
<td>7.1</td>
<td>1.6</td>
<td>31.2</td>
<td>20.5</td>
<td>1.9</td>
<td>3.6</td>
<td>0.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

³ Percentages rounded to the nearest decimal.

a. Public facilities include government offices, police/sheriff stations, fire stations, hospitals, religious facilities, convention centers, libraries, community centers, auditoriums, theaters, observatories, museums, correctional facilities, special care facilities, other special uses (i.e., youth organizations, homeless shelters).
b. Transportation facilities include airports, railroads, freeways and major roads, park-and-ride lots, bus terminals and yards, truck terminals, land portion of harbor facilities.
c. Undeveloped lands also include hillside conserved lands.
d. Utility facilities include power facilities, water facilities, and waste facilities.
e. Unknown land uses include development under construction or unidentified at the time of data collection.
g. Water-related uses include water portion of harbor facilities and water bodies.

Source: SCAG, 2015 Parcel-Based Existing Land Use Dataset
2.4.3 Infrastructure and Streets

Approximately 21 percent (63,888 acres) of all land in the City is developed for streets, storm drainage channels, utility facilities, and reservoirs. The streets are characterized by a grid-like linear pattern that crosses the City. Other infrastructure includes Chatsworth Reservoir, Sepulveda Basin, Los Angeles Reservoir, Hansen Dam, and the areas abutting Hansen Dam to the southwest.

2.4.3.1 Ongoing Sidewalk Repairs

Figures 2-3a and 2-3b depict examples of existing conditions with respect to sidewalks in the City. As shown in Figures 2-3a and 2-3b, existing conditions vary. Some of the examples show sidewalks and curbs that require repair work as a result of street tree uprooting or other effects. Maintenance has consisted of asphalt patching. Figures 2-4a and 2-4b show before-and-after photos of curb ramp installations and sidewalk repair with root pruning.

Figures 2-5a, 2-5b, and 2-5c provide three representative site plans for sidewalk repair and curb ramp installation work required to ensure compliance with accessibility standards. These are illustrative of the type and intensity of work that is associated with any given sidewalk repair. Figure 2-5a illustrates a typical construction site along an arterial street. In this instance, the sidewalks in front of a series of residences are being repaired and the street trees are being root pruned. In addition, the curb ramp at the southern end of the block is being repaired. Figure 2-5b illustrates the installation of two curb ramps. Curb ramp repair/installation includes an assessment of the four corners of an intersection. In this particular case, two of the corners already had compliant curb ramps. At one curb ramp, construction extends into private property to ensure that the walkway at the residence is accessible by conforming to the grade of the new curb ramp. Figure 2-5c illustrates curb ramp improvements and street tree removal at a park and community center. Street tree removal was necessary to improve the curb ramp to accessibility standards. Figure 2-6 shows removal of existing sidewalk and root pruning. In general, the sidewalk is 4 inches deep and, at times, includes 4 inches of base material. Figure 2-7 shows a sidewalk repair where a street tree is retained and the roots pruned. The sidewalk repair extends beyond the first property to the neighboring one. Figure 2-8 shows the intersection of a sidewalk repair with a curb ramp installation, with the sidewalk conforming to a private property walkway. Figures 2-9a and 2-9b show street tree root pruning associated with sidewalk repair. The root mass tends to be shallow, growing in a pan formation because of the presence of water for landscaping in adjacent yards. The roots do not grow deep because there is usually not enough groundwater to sustain them. Figures 2-10a and 2-10b show the location of a street tree removal. The street tree is removed in pieces, and the stump and roots are mulched.
Figure 2-3a. Existing Sidewalk Conditions
Sidewalk Repair Program
Draft Environmental Impact Report

City of Los Angeles Department of Public Works,
Bureau of Engineering

Chapter 2. Project Description

Figure 2-3b. Existing Sidewalk Conditions
Figures 2-4a. Sidewalk Repair – Before and After
Figure 2-4b. Sidewalk Repair – Before and After
Legend

- Tree Pruning or Removal
- Area of Sidewalk Repair

Figure 2-5a. Representative Site Plan for Sidewalk Repair
Chapter 2. Project Description

Legend

- Tree Pruning or Removal
- Area of Sidewalk Repair

Figure 2-5b. Representative Site Plan for Curb Ramp Repair
Figure 2-5c. Representative Site Plan for Community Facility Access Repair
Figure 2-6. Photos of Existing Curb and Sidewalk Removed (above)
Photo of Construction – Root Pruning – Existing Sidewalk Removed (below)
Figure 2-7. Existing Sidewalk Removed and Root Pruning Complete
Figure 2-8. Photo of Construction Affecting Private Walkway
Figure 2-9. Photo of Construction – Street Tree Root Pruning – Existing Sidewalk Removed
Figure 2-10a. Photo of Construction – Street Tree Removal
Figure 2-10b. Photo of Construction – Street Tree Removal
2.4.3.2 Street Trees

Per LAMC Sections 62.161–62.177, the Board of Public Works and Bureau of Street Services (BSS) have certain specified jurisdiction over the trees within City streets. These trees, commonly referred to as street trees, are a subset of the urban forest that contains trees, plants, shrubs, and other vegetative material within private property, parks, state parkland, City facilities, and wildland areas.

BSS exercises management responsibility over street trees and, in coordination with the Los Angeles City Planning Department, “protected trees,” as proscribed in LAMC Sections 46.00–46.06. According to the U.S. Department of Agriculture Tree Canopy Assessment (January 2008), the City’s urban forest contains approximately 10 million trees. A street tree inventory was conducted in 2014 by the City. This inventory identified 711,248 individual street trees comprising 585 species (including a few species that have had a scientific name change). See Biology Appendix for further discussion.

The native tree population, mainly within mountainous areas, was not included in the Tree Canopy Assessment; therefore, these population statistics are unknown.7

According to BSS, at this time, the percentage of sidewalk coverage by a street tree canopy is unknown; however, citywide canopy cover is estimated to be 21 percent.8 Also, it is estimated that 88 percent of the available 800,000 street tree well sites are planted.9

An important component of the Willits Settlement sidewalk repairs is street tree root pruning as well as the removal and replacement of street trees. In June 2015, the Board of Public Works adopted the Street Tree Removal Permit and Tree Replacement Condition Policies. The Policies require all removed street trees to be replaced on a 2:1 basis. (See Policies, at: http://boe.lacity.org/docs/dpw/agendas/2015/201506/20150617/bss/20150617_ag_br_bss_1.pdf.)

Presently, the City considers whether to exempt or conduct further environmental review for individual sidewalk improvement projects on a case by case basis. As part of this process, every effort is made to plant replacement street trees at the same street tree removal location. BSS determines the appropriate species and location for the replacement street trees.

2.5 Proposed Project

2.5.1 Summary of New Ordinance and Primary Components

The Project is the proposed adoption of a new ordinance that revises the way sidewalk repairs pursuant to the Willits Settlement are reviewed and approved and is intended generally to improve and streamline the implementation process. The primary components of the ordinance include:

- Specific parameters to enable most sidewalk repairs to proceed as ministerial approvals, not subject to further environmental review applicable to discretionary actions;

7 Sauceda, Nazario, Director, Bureau of Street Services, Office of the City Clerk. October 22, 2015—City Council Instruction for Bureau of Street Services to Report Relative Health of City of Los Angeles Trees (CF 15-0467).
8 Ibid.
9 Ibid.
• A streamlined discretionary approval process for sidewalk repair projects falling outside the specific parameters allowed for a ministerial sidewalk repair approval;

• A revised Street Tree Retention, Removal and Replacement Policy establishing a 2:1 street tree replacement to removal ratio requirement for the first 10 years (starting from July 2017), a 3:1 ratio for years 11 to 21, and a 2:1 ratio for the last 9 years of the 30-year program; and

• Mandatory Project Design Features (PDFs) generally consisting of regulatory compliance measures and standard construction conditions and procedures.

Each of these primary components is further described below.

2.5.2 Specific Parameters under Which Individual Sidewalk Repairs Would Proceed Ministerially

The new ordinance would enable, notwithstanding anything in the City code to the contrary (except for the City of Los Angeles Cultural Heritage Ordinance, City of Los Angeles Administrative Code (LAAC) Section 22.171), all sidewalk repair projects under the Willits Settlement to be subject to ministerial approval by the City Engineer or designee, so long as the individual project meets the following specified parameters:

(1) It is for the repair or reconstruction of a sidewalk or other facilities in compliance with disability law accessibility requirements being implemented under the Willits Settlement;

(2) It is within specific parameters of the construction scenarios for the EIR assessment described below (Scenarios 1 and 2), specifically sidewalk repairs lasting no more than 30 non-consecutive construction days in duration and requiring excavation depth of no greater than 30 feet;

(3) It would not cause a substantial adverse change to significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource, as those terms are defined by CEQA;

(4) It complies with the Revised Street Tree Retention, Removal and Replacement Policy, as described below in Section 2.4.4; and

(5) It complies with PDFs included in the ordinance, as described in Chapter 3, Environmental Impact Analysis and summarized in the Executive Summary, Section ES.3.

If the individual project does not meet all the specific parameters listed above, it would be subject to (notwithstanding anything in the City code to the contrary, except for the Cultural Heritage Ordinance, LAAC Section 22.171), discretionary approval by the City Engineer or designee. Individual sidewalk repair projects subject to the future discretionary approval process still must: (1) be for the repair or reconstruction of a sidewalk or other facilities in compliance with the Willits Settlement; (2) comply with the Revised Street Tree Retention, Removal and Replacement Policy as described below in Section 2.4.4; and (3) comply with the PDFs as described in Chapter 3, Environmental Impact Analysis and summarized in the Executive Summary, Section ES.3. For these discretionary approvals, this EIR would serve as programmatic analysis of the impacts, and further project-level environmental review would be performed as necessary depending on whether the project is within the scope of the EIR pursuant to CEQA Guidelines Section 15168.
2.5.3 Construction Scenarios Assumed for EIR Analysis

2.5.3.1 Overview

The impacts analyzed for the Project are based on the City’s commitments under the Willits Settlement, and the maximum construction activity possible in any single year over the course of the 30 year implementation period, from June 2017 through June 2047. For quantitative analysis purposes in this Draft EIR, an average site is assumed to be 650 linear feet long and 5 feet wide for each construction site. This assumption is based on data gathered from past work. As a conservative approach, it is also assumed that each repair site would include a street tree removal when the street tree cannot survive root pruning. The actual work completed in 2017-2018 (the first year of the Willits Settlement) was approximately 24.4 miles of sidewalk repair, 211 street tree removals, 484 new street trees replanted (at a 2:1 ratio) and no overhead utility relocation.

This environmental analysis is informed by past work completed pursuant to the Willits Settlement. Therefore, it was assumed that up to 37 miles per year of repair work will occur for the first five years and that repair work will increase thereafter based on varying financial commitments every five years, per the Willits Settlement.

With respect to construction activities, the sidewalk and curb ramp repair work throughout the City is anticipated to increase every five years of the Project as resources are available and efficient processes are implemented. Table 2-4 shows the projected total square feet of sidewalk and curb ramp proposed to be repaired every 5 years, with 37 miles annually for the first 5 years, increasing to approximately 75 miles annually during the last 5 years. Hence, the amount of sidewalk and curb ramp repair increases, and the number of construction activities and crew increases. The number of street trees removed per site, however, remains constant at one street tree removed per site.

Therefore, the analysis in this Draft EIR represents a conservative maximum construction work scenario from an environmental impact standpoint for air quality, canopy loss, greenhouse gas emissions, street tree removals, water demand, hydrology, transportation and use of construction equipment, and other resources that are affected by the amount of sidewalk repair completed by Year 30.

Additionally, as described further below, the City intends to achieve a “net neutral” street tree canopy by the end year of the Project. Net neutral means the amount of street tree canopy cover removed as a result of sidewalk repairs over the life of the Project would be completely offset by the growth in replacement street tree canopy cover by year 30 of the Project. As described in this Draft EIR, the Project includes a 2:1 street tree replacement ratio for years 1 through 10; a 3:1 street tree replacement ratio for years 11 through 21; and a 2:1 street tree replacement ratio for years 22 through 30. Following this replacement ratio, for the projected number of street trees removed, would provide the City with net neutral street tree canopy by year 30. As described in Section 2.5.4 below, the City will also monitor and replace dead or dying street trees replaced as part of a sidewalk improvement.

Street trees would be retained to the maximum extent feasible. However, there may be instances that street tree removal and replacement is necessary to ensure pedestrian facilities comply with the applicable accessibility requirements. The following table identifies the estimated maximum sidewalk repairs and street tree removal and replacements that would occur under the Project in 5-year increments.
Table 2-4. Estimated Maximum Sidewalk Repair and Street Tree Removal under the Project

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated Sidewalk Repair (square feet)</th>
<th>Estimated Street Tree Removal (trees)</th>
<th>Estimated Street Tree Replacement (trees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–5</td>
<td>4,843,750</td>
<td>1,460</td>
<td>2,915</td>
</tr>
<tr>
<td>6–10</td>
<td>5,584,845</td>
<td>1,680</td>
<td>3,360</td>
</tr>
<tr>
<td>11–15</td>
<td>6,437,500</td>
<td>1,940</td>
<td>5,820</td>
</tr>
<tr>
<td>16–20</td>
<td>7,421,875</td>
<td>2,235</td>
<td>6,705</td>
</tr>
<tr>
<td>21–25</td>
<td>8,560,940</td>
<td>2,575</td>
<td>5,665</td>
</tr>
<tr>
<td>26–30</td>
<td>9,870,315</td>
<td>2,970</td>
<td>5,940</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42,719,225</td>
<td>12,860</td>
<td>30,405</td>
</tr>
</tbody>
</table>

Source: BOE 2018.

1 Based on street tree replacement of 2:1 for years 1-10, 3:1 for years 11-21, and 2:1 for years 22-30

2.5.3.2 Types of improvements for Individual Sidewalk Repair Projects

Based on the work already being performed under existing City programs, the repair projects proposed to be implemented under the Project may include the following types of improvements to meet applicable accessibility requirements:

- Install missing curb ramps;
- Repair street tree damage to sidewalk or walkway surfaces;
- Upgrade existing curb ramps;
- Repair broken and/or uneven pavement in the pedestrian ROW;
- Repair vertical or horizontal displacement or upheaval of the sidewalk or crosswalk surfaces;
- Correct non-compliant cross slopes in sidewalks or sections of sidewalks;
- Remove protruding and overhanging objects and/or obstructions;
- Widen restricted pedestrian ROW when required;
- Provide clearance to the entrances of public bus shelters;
- Repair excessive gutter slopes at the bottom of curb ramps leading into crosswalks;
- Eliminate of curb ramp lips on curb ramps;
- Install utility covers;
- Repair driveways, curbs, and gutters;
- Repair gaps and missing sidewalk sections;
- Retain, remove, and/or replace street trees as needed;
- Widen street tree wells, to 4’ by 6’ as needed;
- Prune street tree roots and/or canopy as needed; and
- Addressing other non-compliant accessibility conditions, as required.
2.5.3.3 Assumptions for Individual Sidewalk Repair Projects

As described further below, all sidewalk repair segments involve common procedures and requirements. As explained herein, and for purposes of analyzing the maximum extent of activities and potential impacts under the three identified scenarios, this Draft EIR provides an analysis of the least complex to the most complex activities in order to describe the full range of construction activities that could occur, as required under CEQA.

2.5.3.4 General Requirements for all Construction Scenarios

Construction Equipment

Project components under each of the construction scenarios could vary slightly, depending on the location of construction sites. For example, not all sidewalks would include removal and replacement of a street tree. One street removal and replacement in each scenario is included for analysis purposes in this Draft EIR, based on one, as the average, street tree removal and replacement for the majority of sidewalk segment improvements occurring at the time of the NOP release for the Project.

Construction equipment associated with implementation of the Project under all scenarios would typically include a concrete mixer, power tools (e.g., concrete cutting saws, chain saws), hand tools, dump trucks, bucket trucks with aerial lifts, and concrete trucks. In addition, traffic control measures, including traffic signs and traffic cones, would be required. During construction, pedestrian and/or car traffic may need to be routed around construction, and street parking may be temporarily limited in the area. Information regarding the construction equipment, duration, and activity assumptions used in this Draft EIR analysis is in Chapter 3.2, Air Quality and Greenhouse Gas Emissions, and is summarized below:

Table 2-5. Summary of Activities for Each Construction Scenario

<table>
<thead>
<tr>
<th>Event/Phase</th>
<th>Duration (days)</th>
<th>Daily Equipment Type (count)</th>
<th>Daily Workers</th>
<th>Truck Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Scenario 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization</td>
<td>5</td>
<td>Compressor (1) Small Generator (1)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Traffic Control/Demolition/Removal</td>
<td>1</td>
<td>Pneumatic Jackhammer (2) Concrete Saw (2) Skid-Steer Loader (1) Tractor (1)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Grading/Formwork</td>
<td>1</td>
<td>3 Ton Roller (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Pouring</td>
<td>1</td>
<td>Concrete Mixer (1) Concrete Vibrator (2)</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Utility Adjustment</td>
<td>2</td>
<td>Manhole Cutter (1) Concrete Saw (1) Concrete Mixer (1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Street Tree Removal</td>
<td>1</td>
<td>Bucket Truck (1) Chainsaw (1) Wood Chipper (1) Stump Grinder (1) Skid-Steer Loader (1)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Event/Phase</td>
<td>Duration (days)</td>
<td>Daily Equipment Type (count)</td>
<td>Daily Workers</td>
<td>Truck Trips</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Street Tree Planting</td>
<td>1</td>
<td>Mini Excavator (1)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cleanup</td>
<td>1</td>
<td>N/A</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Construction Scenario 2

<table>
<thead>
<tr>
<th>Event/Phase</th>
<th>Duration (days)</th>
<th>Daily Equipment Type (count)</th>
<th>Daily Workers</th>
<th>Truck Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization</td>
<td>5</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Traffic Control/ Demolition/Removal</td>
<td>1</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Grading/Formwork</td>
<td>1</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Concrete Pouring</td>
<td>1</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Utility Relocation</td>
<td>20</td>
<td>Concrete/Industrial Saw (1), Excavator (1), Vibratory Plate Compactor (1), Asphalt Paver (1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Crosswalk Repaving</td>
<td>5</td>
<td>Concrete/Industrial Saw (1), Skid Steer Loader (1), Asphalt Paver (1), Line Stripper (1)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Street Tree Removal</td>
<td>1</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Street Tree Planting</td>
<td>1</td>
<td>Same equipment as under Construction Scenario 1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cleanup</td>
<td>1</td>
<td>N/A</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

N/A = Not Available

Construction Crew

It is estimated that the number of construction crews expected at any one time Citywide would range from six crews in the first 5 years, increasing incrementally in years 6–24, to 12 crews in the last 5 years of the Project. Crews would vary in composition and range from 3 to 9 workers per site for both construction scenarios. There would be approximately 298 crew teams for the first 5 years, or six crew teams at one time for 50 weeks. In the last 5 years of the Project, there would be approximately 607 crew teams, or 12 crew teams at one time.
The remainder of this section offers a description of how the typical construction process would proceed. It should be noted that the actual construction process and schedule would be determined by the City and/or contractor at the time of mobilization, consistent with the approval given by the City Engineer for the individual sidewalk project under the Project; therefore, the information presented below should be regarded as illustrative of typical construction processes under each scenario as described above. All construction would be performed in accordance with the BOE Standard Plans and designs. The Standard Plans are divided into several series and contain standard plans for City infrastructure. The Streets section provides details regarding sidewalk repairs, street tree planting, curb ramps, and pedestrian walkways; other sections provide details related to sidewalk culverts, sidewalk outlet structure, curbside grating, and catch basin remodeling. BOE Master Specifications prescribe methodologies for shoring practices for trenching, environmental measures, treatment of historic resources, types of replacement materials, etc. (see BOE Master Specifications Library at http://boe.lacity.org/bms/menu.cfm?mid=0&did=2).

Days of Construction

Construction activities could be for a minimum of approximately 5 non-consecutive construction days to up to 30 non-consecutive construction days; for example, a construction site that requires only minimal sidewalk repair would require a minimum of 5 non-consecutive construction days to complete (Scenario 1), whereas more extensive repair that would involve above- or below-ground utility relocation and street tree removal could require up to 30 non-consecutive days of construction (Scenario 2).
Table 2-7. Summary of Approximate Construction Phases and Duration

<table>
<thead>
<tr>
<th>Construction Scenario/Phase</th>
<th>Number of Work Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2:1 ratio (years 1-10, 22-30)</td>
</tr>
<tr>
<td>1. Scenario #1</td>
<td></td>
</tr>
<tr>
<td>Mobilization, Traffic Control, Demolition, and Removal</td>
<td>2</td>
</tr>
<tr>
<td>Grading/formwork</td>
<td>1</td>
</tr>
<tr>
<td>Concrete pouring</td>
<td>1</td>
</tr>
<tr>
<td>Utility Adjustment</td>
<td>2</td>
</tr>
<tr>
<td>Street Tree Removal and Replacement</td>
<td>2</td>
</tr>
<tr>
<td>Cleanup</td>
<td>1</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>5</td>
</tr>
<tr>
<td>2. Scenario #2</td>
<td></td>
</tr>
<tr>
<td>Mobilization, Traffic Control, Demolition, and Removal</td>
<td>2</td>
</tr>
<tr>
<td>Grading/formwork</td>
<td>1</td>
</tr>
<tr>
<td>Concrete pouring</td>
<td>1</td>
</tr>
<tr>
<td>Utilities relocation</td>
<td>20</td>
</tr>
<tr>
<td>Crosswalk Repaving</td>
<td>5</td>
</tr>
<tr>
<td>Street Tree Removal and Replacement</td>
<td>2</td>
</tr>
<tr>
<td>Cleanup</td>
<td>1</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2-8. Approximate Total Project Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated Sidewalk Repair (square feet)</th>
<th>Estimated Sidewalk Repair Per Year (sq ft)</th>
<th>Crew Teams Per Year</th>
<th>Crew Teams Per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–5</td>
<td>4,843,750</td>
<td>968,750</td>
<td>298</td>
<td>6</td>
</tr>
<tr>
<td>6–10</td>
<td>5,584,845</td>
<td>1,116,969</td>
<td>344</td>
<td>7</td>
</tr>
<tr>
<td>11–15</td>
<td>6,437,500</td>
<td>1,287,500</td>
<td>396</td>
<td>8</td>
</tr>
<tr>
<td>16–20</td>
<td>7,421,875</td>
<td>1,484,375</td>
<td>457</td>
<td>9</td>
</tr>
<tr>
<td>21–25</td>
<td>8,560,940</td>
<td>1,712,188</td>
<td>527</td>
<td>11</td>
</tr>
<tr>
<td>26–30</td>
<td>9,870,315</td>
<td>1,974,063</td>
<td>607</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42,719,225</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction Hours

Construction would occur Monday through Friday between 7:00 a.m. and 4:00 p.m. On occasion, work may take place on a Saturday between 8:00 a.m. and 5:00 p.m. In select locations, work hours may be reduced to accommodate rush-hour restrictions. No construction would occur on Sundays or holidays. (See General Conditions 00210 and LAMC Section 41.40.)
2.5.3.5 Typical Construction Scenarios

The two prototypical construction scenarios below are developed for illustrative purposes to represent the most frequent sidewalk repair (Scenario 1) and the less frequent sidewalk repair (Scenario 2). An additional, rare, construction scenario (Scenario 3) was also developed for a programmatic analysis of repair projects that may result in significant impacts for illustrative purposes, particularly for the analysis of project alternatives. These scenarios are representative of various configurations, depending on the conditions of each site. All components described below may not occur at each project location.

The numerical estimates for sidewalk and curb ramp repairs are based on past data and past work for Scenario 1, whereas Scenario 2 is based on the same data with the addition of assumptions for future work.

Scenario 1: Sidewalk Repair with Curb Ramp Repairs, Street Tree Removal and Replacement, and Minor Utility Work

This scenario includes the following construction activities and any combination thereof:

- Sidewalk repair work, including fixing broken concrete, cracks, uplifts, driveways, and curb and gutter, and making required accessibility improvements such as cross-slope work.
- Curb ramp repairs or installation.
- Street tree retention, removal, and replacement.
- Minor utility work, such as irrigation and curb drain replacements, and utility box adjustments.

Sidewalk Repair

Typical sidewalk repair at one construction location takes approximately 5 non-consecutive construction days for a 650-linear-foot site for a 6 to 8-person crew. On average, sidewalk repair requires the following: 1 day for demolition of the existing sidewalk, 1 day for grading and formwork, 1 day for street tree removal and replacement, 1 day for construction of the new sidewalk, and 1 day for cleanup and restoration of the parkway. In some instances, soil compaction may be required. The depth of excavation for sidewalks usually would typically be approximately 8 inches (i.e., 3 to 4 inches for concrete removal and 4 inches for untreated base material). Excavation at driveways would be up to approximately a foot deep (i.e., 6 inches for concrete removal and 6 inches for untreated base material). Excavations for street tree replacement and minor utility relocation could involve excavation extending to depths of 36 inches (3 feet). Construction equipment for sidewalk repair may include the following standard tools: concrete saws and backhoe for removing the existing sidewalk, a concrete truck for delivery of new concrete, vibratory plate compactor for soil/gravel compaction, and a dump truck to haul removed concrete.

Curb Ramp Repairs

Curb ramp repairs may be needed as part of the sidewalk repair and may require a similar level of effort and equipment as sidewalk repair. A curb ramp repair typically lasts 3 to 4 days. Curb ramps could have an impact on pedestrian traffic and require temporary ramps. Temporary ramps would not damage existing pavement, curbs, or gutters near the proposed work. Curb ramp repairs would occur concurrently with other sidewalk repair activities.
Street Tree Retention, Removal and Replacement

Street tree removal equipment consists of chainsaws, wood chipper, skid steer, rigging equipment, rope, wedges, and clearing and cleaning tools. Street tree removal vehicles, bucket truck and stump grinders may be on-site for 1 to 2 days. The street would not be closed to vehicular traffic, but traffic flagpersons and/or devices would need to be in place during street tree removal to protect vehicles from unforeseen falling debris. Bicycle lanes will most likely be merged into traffic lanes if adequate lane width is available. If the traffic lane width is not adequate, then bicyclists would most likely be routed to an adjacent street. Pedestrians would be rerouted to the other side of the street for the entire block in most cases.

Underground Service Alert may be contacted prior to excavation to identify existing utilities in or near the tree wells for all street tree plantings. Depending on the location of the existing utilities and the number of plantings to be performed, equipment could include a mini excavator, or shovel. Root barrier installation is recommended between the street tree and the sidewalk. This would involve an area of around 18 inches deep and about 10 feet long. The street tree is planted, and stakes are typically installed and secured to the street tree. Decomposed granite is often placed in street tree wells, and soil is placed in parkways. New street trees would be watered for a 3-year establishment period, typically with a water truck. When manual watering is not available, other watering practices such as water bags may be used. See Chapter 3.3, Biological Resources and appendix for further discussion.

Street Sign Relocation

As part of sidewalk and curb ramp repairs, street signs, such as stop signs, pedestrian signs, crosswalk signs, etc., may need to be relocated. Such street signs are used for vehicle and pedestrian safety. Trenching for pole-top street signs could be up to approximately 36 inches deep. Vehicles and pedestrians may be rerouted. Typically, this construction work takes approximately 4 hours and hand tools to complete.

Minor Utility Work

Minor utility relocations are usually due to utility laterals that interfere with sidewalk construction (e.g., gas and water service laterals to businesses and homes). Utilities that may be encountered include electrical (e.g., street lighting, Department of Water and Power lines), water and gas. If an existing utility lid or cover is damaged or missing, it will be replaced. Prior to construction, utility work involves coordination with property owners and utility agencies. Utility relocation typically requires trenching up to approximately 36 inches deep; mini-excavators; staging areas for excavated soils; and a vibratory plate compactor as part of sidewalk and/or curb ramp repairs for 650-linear-foot site with a 6 to 8-person crew.

Staging

Construction staging would be adjacent to the sidewalk improvements when possible and could occupy 3 or 4 parking spaces. Signage would be posted to reroute pedestrians and vehicles. When the concrete is being poured, cement trucks generally occupy one lane in the right of way and private driveways would be restricted to allow for concrete curing. A typical construction site would

include pickup trucks with trailers for equipment and a backhoe or skid steer. All construction vehicles, with the exception of backhoes, skid steers and portable toilets, would be removed daily from the construction site location.

Scenario 2: Sidewalk Repair with Curb Ramp Repairs, Crosswalk Repaving, Street Tree Removals and Replacements, and Substantial Utility Work

This scenario represents the following construction activities and any combination thereof:

- Sidewalk repair work, including fixing broken concrete, cracks, uplifts, driveways, and curb and gutter, and making required accessibility improvements such as cross-slope work.
- Curb ramp repairs or installations.
- Crosswalk repaving.
- Street tree retention, removal, and replacement.
- Substantial underground and/or overhead utility work.

Sidewalk Repair

Same as Scenario 1, and may include the removal of more than one street tree, with the potential addition of required coordination between subcontractors because of substantial utility work under this scenario.

Curb Ramp Repairs

Same as Scenario 1, with the potential addition of required coordination between subcontractors because of substantial utility work under this scenario.

Crosswalk Repaving

Crosswalk construction may include saw cutting, removal of existing asphalt, and paving, to alleviate existing shoving, cracks, or uplifts from curb ramp to curb ramp. Crosswalk construction is generally performed outside of peak travel times, which are typically the morning and afternoon commute period. Curb ramps leading to the crosswalk must be barricaded in a manner that allows walkways to remain accessible. Equipment may include concrete saw, skid steer, asphalt pavers, and dump truck.

Street Tree Removal and Replacement

This would be similar to work anticipated under Scenario 1, with the potential addition of required coordination between subcontractors because of substantial utility work under this scenario.

Street Sign Relocation

This would be similar to work anticipated under Scenario 1, with the potential addition of required coordination between subcontractors because of substantial utility work under this scenario.

Substantial Utility Work

Substantial utility relocation (e.g., overhead lines) could be possible at a site, from intersection to intersection. This is relevant when overhead poles are placed on or near a sidewalk that restricts the path of travel to less than the required width. Depending on the number of overhead lines,
relocation of an overhead line at one construction site could take approximately 1 to 2 weeks, while removal and replacement of several lines could take approximately 4 to 5 weeks. Utility relocations may require improvement plans from the utility owner for construction. These utility plans generally take about 6 to 12 months of design work prior to acceptance and approval from a utility company. Construction of the utility relocation may require a minimum of two trucks with bucket loaders for each pole installation, an auger for removal of soil for a new base, and a concrete truck for delivery of structural base concrete. This may require closing one lane of traffic, which could have the same traffic constraints as sidewalk construction. Coordination would be required with the utility company for disconnection and reconnection and recommissioning.

Depending on the type of utility being relocated, additional trucks and equipment could be needed, which would require more space for construction staging and parking. Traffic signals may be affected, and coordination will be required with the authorizing agencies, including LADOT for flagpersons. For underground utility relocation, excavation of up to approximately 30 feet with, approximately 36- to 76-inch-deep trenching and shoring, could be required in the relocation areas. The construction equipment may include mini-excavators, four-wheel-drive backhoes, shoring equipment, and compactors as well as a staging area for holding excavated soils. These utilities may require the same traffic control measures as needed for overhead power lines where power to those receivers will be interrupted. Plates would have to be placed over the trenching areas during non-working hours.

Catch Basin and Storm Drain Reconstruction

Catch basin reconstruction typically involves reconstructing the lid only. Full catch basin and storm drain reconstruction may be necessary for sidewalk repairs in compliance with applicable accessibility requirements. Reconstruction of these structures would require excavation and trenching to a minimum depth of 15 feet and a maximum depth of 30 feet, depending on the elevation of the outflow pipes and whether full replacement of the structure is required. Additional trucks and equipment, such as excavators, backhoes, shoring equipment, compactors, and additional concrete trucks, may be necessary, along with additional staging and parking areas. This work could require an additional 3 to 7 days for cast-in-place structures.

Staging

This would be similar to work expected under Scenario 1, with the potential addition of required coordination between subcontractors because of substantial utility work under this scenario. As discussed, construction durations may be longer with the additional and more complex work related to this construction scenario.

Scenario 3: Sidewalk Repair under Specific Environmental Conditions

In rare instances, environmental site conditions for sidewalk repairs may be such that construction activities similar to those encompassed within Scenarios 1 and 2 have the potential to result in additional potentially significant adverse impacts. This construction scenario is described as Construction Scenario 3. For purposes of this Draft EIR, analysis of Construction Scenario 3 is particularly relevant to the discussion in Chapter 4, Alternatives.

Construction Scenario 3 projects would include any combination of activities described for Construction Scenario 1 and Construction Scenario 2, however, Scenario 3 would also include one or more of the following conditions:
• A substantial adverse change to the significance of a historic, tribal, unique archeological or unique paleontological resource; or
• A substantial adverse change to the significance of a historic, tribal, unique archeological or unique paleontological resource resulting in a significant aesthetic impact.

2.5.4 Revised Street Tree Retention, Removal and Replacement Policy

2.5.4.1 Introduction

A street tree is a tree, typically planted by the City, usually in a parkway or within 5 feet of the back of the sidewalk, within the public ROW or a public easement. In some residential neighborhoods, the sidewalk is adjacent to the curb; the easement is situated in the area between the house and the sidewalk. Although it would be ideal to have all healthy, mature street trees preserved, this may not be possible where some sidewalk improvements are needed because of the small areas in which street trees exist and the potential for root or other damage.

Development of the Project has been based on arboriculture best management practices (BMPs), City practices, and research. This uniform policy is necessary to streamline the current street tree permit and approval process.

In general, under the revised street tree policy, street trees will be replaced at a 2:1 ratio for the first 10 years (starting from July 2017), consistent with current City policy (i.e., Board of Public Works adopted Street Tree Removal Permit and Tree Replacement Condition Policies), at a 3:1 ratio for years 11 to 21, and at a 2:1 ratio for the last 9 years of the program. The revised street tree policy would also have the following new standards, as set forth below.

2.5.4.2 Purpose

The purpose of this Policy, in conjunction with the proposed ordinance is:

1. To set forth ministerial permit requirements for street trees retained, removed, or replaced as part of the Sidewalk Repair Program where street trees are the cause of sidewalk damage.

2. To provide objective standards, guidelines, and procedures for a more efficient approval process for Sidewalk Repair Program–related street trees.

3. To have a mixed-age tree population, adequate species diversity, and an appropriate mix of street tree types to provide a diverse urban forest ecosystem that is able to adapt to changing environmental pressures, such as disease, pest infestation, climate, etc.

4. To identify street trees that have varied forms, textures, structures, flowering characteristics, and other aesthetic benefits to enhance the types of street environments found in the City.
2.5.4.3 Responsible City Entities and Current Duties

Department of Public Works (DPW) – DPW is responsible for street trees in all public ROW as defined in LAMC Section 62.162.

Board of Public Works (Board) – The Board is responsible for approving street tree permits for three or more street tree removals.

DPW, Bureau of Engineering (BOE) – BOE is responsible for managing and implementing the Sidewalk Repair Program.

DPW, Bureau of Street Services (BSS) – BSS is the responsible agency for the initial sidewalk assessment, for performing sidewalk repairs, all ancillary tree work, inspection, and the issuance of the Sidewalk Certificate of Compliance for work BSS performs. BSS is typically responsible for performing work required under the Access Request Program.

DPW, BSS, Urban Forestry Division (UFD) – UFD is the responsible agency for assessing the disposition of street trees causing damage to the sidewalk. UFD will determine if root pruning is allowed or if tree removal and replacement are necessary. UFD is responsible for issuing the proper street tree permits, for some street tree removal and planting work, including maintenance, and monitoring under the Sidewalk Repair Program.

DPW, Bureau of Contract Administration (BCA) – BCA is the responsible agency for the initial assessment of the locations included in the Rebate Program to determine the required scope of all concrete work (e.g., sidewalk, curb/gutter, driveway). BCA also performs the inspection for all private contract work, including City Facilities and Rebate, and is responsible for the issuance of the Sidewalk Certificate of Compliance.

Root Pruning

The objective of the root-pruning program is to ensure that roots are pruned prior to a sidewalk becoming non-compliant with applicable accessibility requirements. City root-pruning standards are applicable to tree species that could be considered for root pruning, which would be limited to only one side of the planting area where the tree is planted. This practice would continue to be applied under the Project as a method of street tree retention.

Root pruning is a practice wherein street tree roots that create an off-grade sidewalk condition are cut, allowing the sidewalk to be reconstructed on grade in compliance with applicable accessibility requirements. Root pruning may be hazardous to both a street tree’s structural stability and/or health. Although every individual tree of a particular species, as well as species within the global street tree population, grows at different rates, root-pruning guidelines consider the lowest common denominator for conflict recurrence. The selection of street trees that can be root-pruned considers street tree species, the distance from the trunk that the roots are pruned, the size of the pruned roots, and the volume of root plate affected by root pruning.

International Society of Arboriculture (ISA) BMP and arboriculture research generally agree that root pruning any closer than three to five times a tree’s diameter is highly discouraged. Utilizing these limits even at the low end (three times the diameter) would nearly preclude all street trees from being root-pruned. For example, a 10-inch-diameter tree would not be able to be root-pruned any closer than 10 inches \(\times 3 = 30 \) inches, or 2.5 feet. A 5-foot parkway or street tree well would preclude root pruning because the root pruning would occur too close to the trunk. This example is
extreme because most street trees that damage sidewalks are much larger than 10 inches in diameter. The size of the average open parkway is 5 to 6 feet. The average street tree well size would be 4 feet by 6 feet. In other words, the use of BMPs would preclude root pruning as a street tree retention method. UFD would prune street trees at 3-year intervals. All street-tree pruning under the Project would comply with the ISA Tree Pruning Guidelines; the American National Standards Institute (ANSI) Trees, Shrubs, and Other Woody Plants Maintenance Standard Practices (ANSI A300); and the City Tree Trimming Standards to ensure proper pruning practices.

Canopy Pruning

Canopy pruning may be necessary to comply with accessibility requirements if the street tree canopy is obstructing the pedestrian access route. Minimum clearance of 80" is required above the sidewalk. The following would be the procedures for street tree canopy pruning:

1. **Certified UFD Street Tree Supervisor**
 - The arborist shall hold a valid C61/D49 state contractor’s license.
 - Ask for local references.

2. **Proper cuts**
 - Pruning cuts shall be made in branch tissue just outside the branch bark ridge and collar, without causing injury to the street tree.
 - No flush-cuts shall be made.
 - No stubs shall be left in the street tree.
 - Cuts shall have no ripping or tearing of the bark.

3. **Proper thinning**
 - Seldom should more than 25 percent of the street tree’s foliage shall be removed.
 - Sufficient branch structure should remain in the interior of the street tree.
 - Foliage shall be removed in a manner that leaves the street tree in symmetrical balance.

4. **Proper crown raising**
 - Street trees shall be raised to conform to LAMC Section 62.163.

5. **Correcting defects**
 - Remove dead, diseased, damaged, or crossing limbs.
 - Remove any broken hanging limbs.
 - Perform crown restoration on previously topped or severely pruned street trees.

6. **No topping cuts shall be made**
 - Topping cuts invite insects and decay.
 - New growth is weak and promotes profuse water sprout growth.
 - Topping cuts deplete trees’ energy stores, reduce photosynthesis, and prohibit trees’ ability to gather and process sunlight, reducing survivability.

7. **Inspection**
 - All street tree inspections shall be conducted by a Certified UFD Street Tree Supervisor.
All pre- and post-pruning street tree inspections would be performed by a Certified UFD Street Tree Supervisor. It should be noted that a root-pruning permit would not be necessary for street tree pruning and root pruning under the Project. Furthermore, street tree canopy pruning and root pruning would occur in compliance with the Migratory Bird Treaty Act (MBTA) and California Fish and Wildlife Code, as discussed in detail in Chapter 3.3, Biological Resources.

2.5.4.4 Street Tree Removal Criteria

For the removal and replacement of street trees, the UFD Chief Forester has been designated as the officer with the authority to ensure future sidewalk repair projects falling under the proposed ordinance comply with the Revised Street Tree Retention, Removal and Replacement Policy. A thorough inspection and review would be undertaken for each street tree removal and replacement using the aforementioned practices.

Prior to a street tree removal, each removal would be evaluated by the UFD per the criteria below.

- Street trees that are dead, diseased, or unable to be retained by root pruning alone would be removed.
- Street trees exhibiting crown dieback in excess of 50 percent would be removed.
- Street trees with a 50 percent or greater foliated crown would be removed.
- Street trees exhibiting signs of Xylella or other severe pest infestations (e.g., crown dieback, cankers, exudates) would be removed.

Street Tree Well – Street tree wells would be enlarged to 4 feet by 6 feet and roots would be pruned as necessary, while still maintaining applicable accessibility requirements.

Sidewalk Ramping – In public ROW types where continuous planting strips (parkways) exist with street trees, the reconstructed sidewalk may be placed on top of the root plate (ramped). Ramping requires enough linear space on each side of the highest point of the ramp to allow for a slope of no more than 5% and cross-slopes of 2%. Utilization of ramping may void the sidewalk warranty.

Sidewalk Minimizing – In public ROW types where continuous planting strips (parkways) exist with street trees, sidewalks may be reduced in width to allow more root growth area and root pruning, as necessary, if the remaining sidewalk width still maintains ADA accessibility requirements.

Meandering Sidewalk - In some locations it may be possible to meander the sidewalk around existing trees to allow additional room for root growth. Meandering may require an additional sidewalk dedication or easement.

Private Property Trees - Private Property trees are required to be maintained by the property owner. The Project will not perform any root pruning or removal of private property trees causing damage to the sidewalk or direction on measures to be taken.

Native Trees

The City is home to several native tree species. The native tree population is a significant part of the City’s urban forest. In recognition of native trees’ contribution to the natural environment, the citizens and government of the City enacted an ordinance to protect certain non-planted native trees against removal or damage. By their very nature, native tree species have unique environmental and
growth needs that are often not present in a street tree environment. Generally, because of native trees’ growth needs and habits, the planting of native tree species requires larger planting areas. Additionally, the two most prevalent native tree species in the Los Angeles area, coast live oak (*Quercus agrifolia*) and western or California sycamore (*Platanus racemosa*), are both considered high biogenic emitters. Therefore, widespread use of native tree species must be thoroughly evaluated before being implemented. All efforts would be made to plant native trees; however, if the existing street tree well location or size is not suitable for a native tree, a UFD acceptable street tree species would be planted. (See Appendix D.)

2.5.4.5 Historical Cultural Monuments

The City has recognized and designated several street tree locations as worthy of Historic-Cultural Monument status. These include:

- Monument #148.0 – Coral (*Erythrina caffra*) street trees on San Vicente Boulevard between Brigham Avenue and 26th Street
- Monument #465.0 – Sycamore (*Platanus racemosa*) street trees on Bienvenida Avenue between Sunset Boulevard and the dead-end south of Sunset Boulevard
- Monument #93.0 – California pepper (*Schinus molle*) street trees on Canoga Avenue between Ventura Boulevard and Syltilllo Street
- Monument #49.0 – Olive (*Olea europea*) street trees on Lassen Street between Topanga Canyon Boulevard and Farralone Avenue
- Monument #24.0 – Coast live oak (*Quercus agrifolia*) (deceased) in median island on Louise Avenue 210 feet south of Ventura Boulevard
- Monument #41.0 – Deodar cedar (*Cedrus deodar*) street trees on White Oak Avenue between Devonshire Street and Ronald Reagan Freeway (State Route 118)
- Monument #94.0 – Median island Queen Palm (*Syagrus romanzoffianum*) and Mexican Fan Palm (*Washingtonia robusta*) street trees on Highland Avenue
- Monument #509.0 – Camphor (*Cinnamomum camphora*) street trees in the 1200 block of Lakme Avenue
- Monument #67.0 – Deodar cedar (*Cedrus deodar*) street trees on Los Feliz Boulevard between Riverside Drive and Western Avenue

The City Cultural Heritage Ordinance, LAAC Section 22.171, would still apply to Historic Cultural Monuments under the Project.

2.5.4.6 Public Notification Criteria

Under the Project, the current practice of street tree removal notification would continue with a few modifications. A 7-day notice would be posted on the street tree to be removed. The information would include, but not be limited to, the date and reason for the removal, location and species of the planted or replanted street tree(s), location and species of the replacement street tree to be planted, and a contact name with associated phone number and email.
2.5.4.7 Street Tree Bird/Bat/Raptor Nesting Survey Criteria

Street trees that require pruning or relocation/removal under the Project would be subject to compliance with the MBTA Compliance and California Fish and Game Code sections. The MBTA protects migratory birds and their parts (including eggs, nests, and feathers). The MBTA prohibits killing, possessing, or trading migratory birds, except in accordance with regulations prescribed by the Secretary of the Interior.

In compliance with the MBTA and California Fish and Game Code Sections 3503 and 3503.5, street tree removal activities would take place outside of the nesting bird season (February 1 to September 1) to the extent feasible. In accordance with these regulatory requirements, efforts would be made to schedule removal of mature street trees between September 2 and January 31 to avoid the nesting bird season.

Prior to being removed, all street trees would be thoroughly surveyed for the presence of nesting birds/bats/raptors by a Certified UFD Street Tree Supervisor within 3 days prior to any street tree removal. If any active nests are detected, the area would be flagged, and a minimum 250-foot (500-foot for raptors) non-disturbance buffer would be established for at least 30 days until the nesting cycle has been completed or the UFD tree supervisor determines that the nest has failed.\footnote{U.S. Fish and Wildlife Service. 2018. Threatened & Endangered Species Active Critical Habitat Report. July. Available: https://ecos.fws.gov/ecp/report/table/critical-habitat.html.} If nesting birds are found, an avoidance area would be established around the nest until a qualified avian biologist has determined that young have fledged or nesting activities have ceased. The Project site would be re-surveyed if there is a lapse in construction activities for more than 7 days during the bird breeding season.

A pre-construction nesting bird survey would be submitted at the conclusion of the site survey.

All street tree removal work would be performed under the management of a UFD tree supervisor, including any pre- and post-pruning street tree inspection.

2.5.4.8 Street Tree Planting Specifications

Starting from July 2017, a 2:1 replacement to removal ratio would be followed for years 1-10 (starting July 2017), 3:1 for years 11-21, and 2:1 for years 22-30.

\textbf{Climate} – Southern California is known for its Mediterranean climate, which, for the most part, is conducive to the growth of most of the world’s tree species. Because of its large geographic size, the City has several micro-climates and varying soil types within its boundaries. Therefore, determining the correct species for a specific location would address these considerations.

\textbf{Site Selection} – The location would be determined by a UFD tree supervisor. Street tree design is unique because of the relationship between public and private infrastructure and the linear orientation. Species selection should be based on “right tree, right place” considerations. Because street trees are generally planted along street sides, species selection should consider uniformity along blocks and street segments. Uniformity would allow for similar street tree maintenance and would provide design continuity. Generally, street tree species selection at a given location is determined by the predominant street tree species on a block.
The following areas would be considered for street tree planting, in order of priority:

1. If space exists for a new street tree planting at the location of the removed street tree, a street tree would always be planted back in that location.
2. Planting would take place on either side of the same street/block.
3. All new street trees would be planted on the immediate street to the north, south, east, or west of the removed street tree location.
4. All new street tree would be planted in the neighborhood/community in which the street tree removal(s) occurred (within 0.25 mile).
5. All new street trees would be planted in historically low-canopy areas or in areas with a high index rating of “heat island” or in areas of the City with poor air quality as determined by the South Coast Air Quality Management District, the California Office of Environmental Health Hazard Assessment, or the California EPA.12

Street Tree Selection Guide – The current guide lists 150 street tree species that can be planted in the City. These species can be grown and survive in the City because of the City’s Mediterranean climate (see Appendix D).

Street Tree Planting Standards – Street trees would be planted according to the specifications put forth in BOE Standard Plan(s) S-450-3, S-455-2, and S-456-2.

Street Tree Size – The standard street tree stock replacement size would be a 24-inch box. The 24-inch box size realizes a compromise between street tree establishment ability and a street tree’s resistance to vandalism while providing a reasonable length of time for canopy replacement (7 to 10 years).

Street Tree Root Control Barriers (RCB) – Much arboriculture research on the use of RCBs has been conducted, often with various and sometimes conflicting outcomes. However, most research has shown that the use of RCBs can increase the time in which conflict with the infrastructure the barrier is meant to protect may occur. Therefore, RCBs are required to be installed on street tree plantings per Standard Plan S-456-2.

2.5.4.9 Street Tree Maintenance and Monitoring Requirements

Any person in charge of repair, alteration, or removal of any sidewalk or ancillary structure in any street, sidewalk, parkway, alley, or other public ROW would protect any street tree, shrub, or plant in the vicinity of such repair work with sufficient guards or protectors as to prevent injury to said street tree, shrub, or plant arising out of or by reason of said repair alteration or removal. All green waste generated by the repair of sidewalks or retention, removal, and replacement of street tree(s) as part of the Sidewalk Repair Program would be composted, mulched or disposed of in accordance with title 14 of the California Code of Regulations governing compost quality, as applicable.

For the first three years of planting, UFD would maintain and monitor growth through visual inspections at the time when street trees are manually watered every three weeks. Young street trees that do not survive in the first 3 years would be replaced at a 1:1 ratio.

The young street trees must be able to withstand slight to moderate drought or other stress. The street trees will continue to be maintained by UFD and, as such, the current practice of watering a planted street tree 33 times a year would continue.

Mandatory Project Design Features

As part of Chapter 3, *Environmental Impact Analysis*, each environmental resource area analysis provides, as applicable, PDFs consisting of regulatory compliance measures and other standard conditions for sidewalk repair projects under the Project. These PDFs are summarized in *Executive Summary*, Section ES.3. Each individual sidewalk repair project under the Project would comply with all applicable PDFs.

2.5.5 Illustrative Examples of Application of Proposed Project/Ordinance

For illustrative purposes only, below are hypothetical future individual project characteristics and how they would be treated under the proposed Project/ordinance. All these hypothetical future individual sidewalk repair projects are assumed to: (a) be implemented under the *Willits* settlement; (b) comply with the Revised Street Tree Retention, Removal and Replacement Policy; and (c) comply with the PDFs as summarized in *Executive Summary*, Section ES.3.

Hypothetical Future Individual Project #1:

- Lasts no more than 30 non-consecutive days and requires excavation depth of no greater than 30 feet; and
- Would not cause a substantial adverse change to the significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource.

Project #1 would be subject to ministerial approval by the City Engineer or designee, with no further CEQA environmental review necessary.

Hypothetical Future Individual Project #2:

- Lasts no more than 30 non-consecutive days and requires excavation depth of no greater than 30 feet;
- Involves a known historic resource but determined through pre-screening not to cause a substantial adverse change to the known historic resource; and
- Would not cause a substantial adverse change to the significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource.

Project #2 would be subject to ministerial approval by the City Engineer or designee, with no further CEQA environmental review necessary.

Hypothetical Future Individual Project #3:

- Lasts no more than 30 non-consecutive days and requires excavation depth of no greater than 30 feet;
• Construction is less than 10 feet from a commercial sensitive use and therefore results in a significant noise impact per the analysis in Chapter 3.10, *Noise*; and

• Would not cause a substantial adverse change to the significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource.

Project #3 would be subject to ministerial approval by the City Engineer or designee, with no further CEQA environmental review necessary.

Hypothetical Future Individual Project #4:

• Lasts more than 30 non-consecutive days and/or requires excavation depth of greater than 30 feet; and

• Would not cause a substantial adverse change to the significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource.

Project #4 would be subject to discretionary approval by the City Engineer or designee, with further project-level CEQA environmental review performed as necessary.

Hypothetical Future Individual Project #5:

• Lasts no more than 30 non-consecutive days and requires excavation depth of no greater than 30 feet; and

• Would cause a substantial adverse change to the significance of a known historic, tribal cultural, unique archaeological, or unique paleontological resource, based on pre-approval screening.

Project #5 would be subject to discretionary approval by the City Engineer or designee, with further project-level CEQA environmental review performed as necessary.

Hypothetical Future Individual Project #6:

• Lasts no more than 30 non-consecutive days and requires excavation depth of no greater than 30 feet; and

• Would cause a substantial adverse change to the significance of a City Historical Cultural Monument.

Project #6 would be subject to discretionary approval by the City Engineer or designee, with further project-level CEQA environmental review performed as necessary. In addition, Project #6 would be subject to the Cultural Heritage Ordinance, LAAC 22.171.